Efficacy of Muscle Energy Technique Versus Strain Counter Strain on Low Back Dysfunction

Marzouk A. Ellythy
Department of Basic Sciences, Faculty of Physical Therapy, Cairo University

ABSTRACT

Background: A recent focus in the manual therapy management of patients with back pain has been the specific training of muscles surrounding the spine, considered to provide dynamic stability and fine control to the lumbar spine. Manual therapy is beneficial for patients with sub acute and chronic non-specific low back pain, both reducing the symptoms and improving function. Purpose: to evaluate the effectiveness of muscle energy technique versus strain counter strain technique on outcome measures in patients with chronic low back pain. Methods: Thirty patients (male and female) their age range 30-50 years, with chronic low back pain (more than three months) were assigned randomly to two equal treatment groups. The first group (n=15) underwent a four weeks program of muscle energy treatment. The second group (n=15) underwent a four weeks program of strain counter strain treatment. Outcome measures include pain intensity, lumbar movements and functional disability index were measured. Results: After intervention. The present study revealed that although there was no statistical significance (P> 0.05) difference in pain intensity level, lumbar range of motion and function disability level between both groups, patients in both groups showed statistical significance (P< 0.05) differences in all outcome measures between pre group (A) pain level from (6.66±0.89) to (2.4±1.05), function disability from (38.73±2.6) to (31.6±3.52) and lumbar movement from (20.5±1.1) to (21.5±1.06) and group (B) pain level from (7.13±1.06) to (3.33±1.44), function disability from (38.26±3.43) to (32.6±3.83) and lumbar movement from (19.76±1.42) to (21±1.86). Conclusion: The current results proved that both MET and SCS techniques are effective in reducing pain and functional disability in patients with chronic low back pain.

Key words: Muscle energy, Strain counter strain, chronic low back pain, outcome measures.

INTRODUCTION

Chronic low back dysfunction (CLBD) is one of the most common reasons for patients to consult physical therapy clinics. A clear diagnosis leading to a specific therapy in conventional medicine can rarely be stated and most patients are diagnosed with mechanical or unspecific low back pain where an exact pathoanatomical diagnosis is not possible. This leads to a huge number of new therapy forms and minimal invasive techniques of which most are not proved to be efficient. Lumbar dysfunction is a serious health problem affecting 80% of people at some time in their life. It affects the mobility of the lumbar region and adjacent joints leading to functional disability.

Muscle energy technique (MET) and proprioceptive neuromuscular facilitation (PNF) stretching methods have been clearly shown to bring about greater improvements in joint range of motion (ROM) and muscle extensibility than passive, static stretching, both in the short and long term. MET is a manual technique that is being widely adopted because it appears safe and gentle and is believed to be effective in patients with a variety of symptoms.

Strain counter strain technique (SCS): is an indirect manipulative osteopathic technique which is considered highly effective technique to relieve pain and restore function to muscles, bones, and joints. It is a powerful therapy for back pain. The application of positional release technique for somatic dysfunction requires a practitioner to first palpate a tender point in the soft tissues, the patient's limb is then moved in such a way that the pain associated with pressure on the tender points is relieved by at least 70 percent to find position of ease, suggested a minimum period required to hold a position of ease as 90 seconds. It is theorized that the shortening or "folding-over" of aberrant tissue in positional release achieves its therapeutic modifications via both proprioceptive and nociceptive mechanisms. Thus; both of the two techniques were compared to investigate their efficacy in chronic low back dysfunction patients.
Subjects
Criteria for inclusion in the study were restricted to 30 patients of either gender between the ages of 30 and 50 years and had persisted low back pain longer than 3 months.\(^7\)

Instrumentations
A- For evaluation:
1. Pain measures: The short form McGill pain questionnaire was used to assess each patient's average symptoms.\(^31\)
2. Lumbar spine range of movement in standing: This was measured using a Modified schober's test to assess lumbar flexion, extension.\(^30\)
3. Functional measures: The Oswestry disability questionnaire was used.\(^17\)

B- For intervention:
1. Infrared Radiation (IRR): model is 2004/2 N, a power of 400 w, voltage 203 v and frequency of 50/60 Hz.
2. Ultrasonic Device: Phyaction U 190, 230 V, 300 mA/50-60 Hz, Plus: 8 w.
3. Therapeutic Exercise program: includes finger to Toes, Bridging Exercise, Back Extension from Prone, Sit-Up Exercise, Knee to Chest Exercise and Stretching Lower Back Muscles. At this point each group is received different osteopathic manipulated technique; first group is received MET to the local spinal stabilizers and spinal mechanoreceptors including (multifidus, interspinalis and rotator muscles) as posterior stabilizers for the spine, (iliopsoas muscle) anterior stabilizers of the spine anteriorly and control lumbar pelvic rhythm and consequent backache, and to (quadratus lumborum muscle) as lateral stabilizer of the spine.\(^15\) It was done 3 times per session for 12 sessions with time of hold for each position 5 sec.\(^39\). While second group is received SCS for the same muscles. Posterior lumbar tender points are located on the Spinous processes, in the paraspinal area, or the tips of the transverse processes in attachment of the quadrates' lamborum and hold 90 seconds for each one and repeat three times.\(^13\)

RESULTS
MET group revealed a statistical significant difference between pre and post treatment pain intensity level as the pain level pre treatment was (6.66±0.89) and for post treatment was (2.4±1.05) where the T-value was (20.69) and P-value was (0.000), there was a significant difference between pre and post treatment lumbar flexion ROM as the lumbar flexion ROM pre treatment was (20.5±1.1) and for post treatment was (21.5±1.06) where the T-value was (3.66) and P-value was (0.002), there was a significant difference between pre and post treatment lumbar extension ROM as the lumbar extension ROM pre treatment was (12.1±0.76) and for post treatment was (10.23±1.74) where the T-value was (4.26) and P-value was (0.001), and finally, there was a significant difference between pre and post treatment functional disability as the functional disability pre treatment was (38.73±2.6) and for post treatment was (31.6±3.52) where the T-value was (9.73) and P-value was (0.000) as shown in table (1).

SCS group showed a statistical significant difference between pre and post treatment pain level as the pain level pre treatment was (7.13±1.06) and for post treatment was (3.33±1.44) where the T-value was (11.64) and P-value was (0.000), there was a significant difference between pre and post treatment lumbar flexion ROM as the lumbar flexion ROM pre treatment was (19.76±1.42) and for post treatment was (21.0±1.86) where the T-value was (3.58) and P-value was (0.003), there was a significant difference between pre and post treatment lumbar extension ROM as the lumbar extension ROM pre treatment was (12.2±0.99) and for post treatment was (11.23±1.08) where the T-value was (4.09) and P-value was (0.001), and finally, there was a significant difference between pre and post treatment functional disability as the functional disability pre treatment was (38.26±3.43) and for post treatment was (32.6±3.83) where the T-value was...
was (9.34) and P-value was (0.000) as shown in table (1).

Table (1): Paired t-test of the dependant variables in each group.

<table>
<thead>
<tr>
<th>Group</th>
<th>Variable</th>
<th>Pre treatment</th>
<th>Post treatment</th>
<th>Paired t-test</th>
<th>P-value</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group (A)</td>
<td>Pain level</td>
<td>Mean ±SD</td>
<td>Mean ±SD</td>
<td>t-value</td>
<td>P-value</td>
<td>S</td>
</tr>
<tr>
<td>(MET)</td>
<td></td>
<td>6.66± 0.89</td>
<td>2.4±1.05</td>
<td>20.69</td>
<td>0.000</td>
<td>S</td>
</tr>
<tr>
<td>Group (B)</td>
<td>Lumbar flexion ROM</td>
<td>20.5± 1.1</td>
<td>21.5±1.06</td>
<td>3.68</td>
<td>0.002</td>
<td>S</td>
</tr>
<tr>
<td>(SCS)</td>
<td>Lumbar extension ROM</td>
<td>12.1± 0.76</td>
<td>10.23±1.74</td>
<td>4.26</td>
<td>0.001</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>Functional disability</td>
<td>38.73± 2.6</td>
<td>31.6±3.52</td>
<td>9.37</td>
<td>0.000</td>
<td>S</td>
</tr>
<tr>
<td>Group (B)</td>
<td>Pain level</td>
<td>7.13± 1.06</td>
<td>3.33±1.44</td>
<td>11.64</td>
<td>0.0001</td>
<td>S</td>
</tr>
<tr>
<td>(SCS)</td>
<td>Lumbar flexion ROM</td>
<td>19.76± 1.42</td>
<td>21.0±1.86</td>
<td>3.58</td>
<td>0.003</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>Lumbar extension ROM</td>
<td>12.2± 0.99</td>
<td>11.23±1.08</td>
<td>4.09</td>
<td>0.001</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>Functional disability</td>
<td>38.26± 3.43</td>
<td>32.6±3.83</td>
<td>9.34</td>
<td>0.000</td>
<td>S</td>
</tr>
</tbody>
</table>

P-value = Probability
S = Significance

Statistical analysis revealed no statistically significant differences between both groups (A) and (B) in the combined dependant variables both pre and post treatment.

Pre treatment there was no significant differences between group (A) and (B) in: (I) pain intensity level where the t-value was (1.7) and P-value was (0.11), (II) lumbar flexion & extension ROM where the t-values were (1.52, 0.36) and P-values were (0.151, 0.727), and finally, (III) functional disability where the t-value was (0.04) and P-value was (0.696) as shown in table (2).

Post treatment there was no significant differences between group (A) and (B) in: (I) pain intensity level where the t-value was (2.11) and P-value was (0.053), (II) lumbar flexion & extension ROM where the t-values were (0.92, 1.89) and P-values were (0.375, 0.079), and finally, (III) functional disability where the t-value was (0.72) and P-value was (0.486) as shown in table (2).

Table (2): Paired-T-test of the dependant variables in both group.

<table>
<thead>
<tr>
<th>Time of measurements</th>
<th>Variable</th>
<th>Group (A) (MET)</th>
<th>Group (B) (SCS)</th>
<th>Paired t-test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ±SD</td>
<td>Mean ±SD</td>
<td>t-value</td>
<td>P-value</td>
</tr>
<tr>
<td>Pre treatment</td>
<td>Pain level</td>
<td>6.66± 0.89</td>
<td>7.13±1.06</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>Lumbar flexion ROM</td>
<td>20.5± 1.1</td>
<td>19.76±1.42</td>
<td>1.52</td>
</tr>
<tr>
<td></td>
<td>Lumbar extension ROM</td>
<td>12.1± 0.76</td>
<td>12.2± 0.99</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>Functional disability</td>
<td>38.73± 2.6</td>
<td>38.26±3.43</td>
<td>0.4</td>
</tr>
<tr>
<td>Post treatment</td>
<td>Pain level</td>
<td>2.4±1.05</td>
<td>3.3±1.44</td>
<td>2.11</td>
</tr>
<tr>
<td></td>
<td>Lumbar flexion ROM</td>
<td>21.5±1.06</td>
<td>21.0±1.86</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>Lumbar extension ROM</td>
<td>10.23±1.74</td>
<td>11.23±1.08</td>
<td>1.89</td>
</tr>
<tr>
<td></td>
<td>Functional disability</td>
<td>31.6±3.52</td>
<td>32.6±3.83</td>
<td>0.72</td>
</tr>
</tbody>
</table>

P-value = Probability
NS = Non significance

DISCUSSION

I. Pain intensity level: both MET and SCS groups revealed a statistical significant reduction in pain intensity level after the intervention period in patient with CLBP. The analgesic effect of MET could be explained by both spinal and supraspinal mechanisms; Activation of both muscle and joint mechanoreceptors occurs during an isometric contraction. This leads to sympatho-excitation evoked by somatic efferents and localized activation of the periaqueductal grey that plays a role in descending modulation of pain. Nociceptive inhibition then occurs at the dorsal horn of the spinal cord, as simultaneous gating takes place of nociceptive impulses in the dorsal horn, due to mechanoreceptor stimulation. MET stimulates joint proprioceptors, via the production of joint movement, or the stretching of a joint capsule, may be capable of reducing pain by inhibiting the
smaller diameter nociceptive neuronal input at the spinal cord level22. This is supported by the study of Degenhard et al. (2007)14 who reported that concentrations of several circulatory pain biomarkers (including endocannabinoids and endorphins) were altered following osteopathic manipulative treatment incorporating muscle energy. The degree and duration of these changes were greater in subjects with CLBP than in control subjects. Moreover myofascial trigger point deactivation was shown to be enhanced by use of different forms of MET19. Consistent with these findings, Selkow et al. (2009)25 who described the effectiveness of MET for hamstring muscle. Also the analgesic effect of MET is confirmed by work Strunk, (2008)40, Buchmann et al. (2005)6, and Wilson et al. (2003)42. On the other hand, Ballentine et al. (2003)3, still argue and hesitate about the efficacy of MET in form of post-isometric relaxation PIR. They suggested that the PIR theory and its consequent hypoalgesic effects are poorly supported by research.

The analgesic effect of SCS technique could be attributed to Bailey and Dick (1992)3 who proposed a nociceptive hypothesis that tissue damage in dysfunctional muscle can be reduced by the positional release mechanism utilized by SCS. The result of the current study is supported by Carlos et al. (2011)23, who proved reduction in pain and muscle tension in upper trapezius, which confirm the assumptions that the application of SCS seems to relieve muscle spasm and restore appropriate painless movement and tissue flexibility. Hutchinson (2008)25 reported that there is significant improvement in VAS for pain intensity following SCS intervention for tennis elbow. These finding was in agreement with Marc (2003)32, who confirmed the analgesic effect of SCS intervention for CLBP. This result also was supported by Meseguer et al. (2006)33, who claimed that the application of SCS may be effective in producing hypoalgesia and decreased reactivity of TePs in the upper trapezius in subjects with neck pain. Moreover, Pedowitz (2005)34 carried out a trial on the use of positional release on iliotibial band friction syndrome and found that the use of SCS as a treatment modality for the athlete can experience reductions in pain and be capable of returning to full activity in less than three weeks from initiation of treatment, compared to an average of 4-6 weeks of conventional therapy. This result also was supported by work of Cleland et al. (2005)11 and Wong et al. (2004)44, who confirmed the significant pain reduction in their studies.

II. Lumbar spine flexion and extension (ROM): Both MET and SCS groups showed a statistical significant improvement in lumbar spine ROM after the intervention period in patient with CLBP.

The improvement in ROM can be explained by reduction of pain and a proposed hypothesis by Hong (1999)23; The current findings of MET group are supported by the work of Blanco et al. (2006)3 and Rajadurai (2011)35, who proved significant improvement in active mouth opening following MET in participants with temporomandibular joint (TMJ) dysfunction. Allen (2011)3 studied the effectiveness of MET in improving hamstring extensibility and considered MET a statistically significant intervention in improving hamstring extensibility in patients with hamstring injuries. Moreover, other studies confirmed the current findings as Willson et al. (2003)42, AL-Khayer and Gervitt, 20071 and Jisha, 200726 that MET has been shown to improve joint range of motion, including spinal joints27,28, other studies have showed that MET is effective in increasing range of motion in the cervical spine38.

While the current finding of SCS group is supported by Howell et al. (2006)33, who provided evidence in support of Korr's (1975) hypothesis of somatic dysfunction. This was supported also by Eisenhart, 200316, who evaluated the efficacy of osteopathic manual therapy (OMT) for patients with acute ankle sprain, showing a statistically significant improvement in edema, pain and a trend toward increased ROM immediately following intervention with OMT. Furthermore8, provided a study about effect of osteopathic manipulative therapy OMT in case of Temporomandibular disorders (TMD) in randomized controlled trial, The result of the
study was a significant improvement of pain which assessed by VAS and increase range of maximal mouth opening and lateral movement of the head around its axis.

In contrast[21], provided study to investigate the effect of SCS on increasing hamstring flexibility and concluded that SCS technique is not effective in increasing knee extension in healthy subjects who have decreased hamstring flexibility.

III. Functional Disability: both MET and SCS groups revealed a statistical significant reduction in Function disability level after the intervention period in patient with CLBP. This improvement is the resultant of combined findings of pain reduction and increasing of lumbar spine mobility. MET group is supported by a study of Wilson (2003)[22] concluded that using MET may benefit a patient to reduce low back pain and improve low back functional disabilities. While SCS group finding was in agreement with Lewis and Flynn (2001)[29], who reported improvements in the outcomes measured for disability levels.

Conclusion
The current results proved that both MET and SCS techniques are effective in reducing pain and functional disability in patients with chronic low back pain.

REFERENCES

40- Strunk, R.G. and Hondras, M.A.: A feasibility study assessing manual therapies to different regions of the spine for patients with subacute
بحث: تأثير تقنيات الطاقة العضلية والاجهاد مقابل الإجهاد على الاعتلال الوظيفي لمنطقة أسفل الظهر

الملخص العربي

تُعرف ألم أسفل الظهر بأنه الأكثر كلفة من الناحية الاقتصادية على مستوى العالم. تتراوح نسبة الإصابة به بين 5% - 8% بمن البالغين. كما تبلغ نسبة عودة الألم بعد الشفاء منه ما بين 50% - 88%. تتعدد وسائل العلاج الطبيعي المستخدمة في علاج ألم أسفل الظهر إلا أنه بدأ التركيز في الأونة الأخيرة على استخدام العلاج اليدوي الإستوباثي في صورة كل من تقنيات طاقة الانقباض العضلي وكذلك الإجهاد مقابل الإجهاد للتحكم والسطرة على هذا النوع من الألم.

الهدف: تهدف هذه الدراسة إلى تقييم فاعلية كل من طاقة الانقباض العضلي وكذلك الإجهاد مقابل الإجهاد على المخرجات الوظيفية لمرضى ألم أسفل الظهر المزمن.

الطريقة: تم إجراء هذا البحث على ثلاثين مريضاً (رجال – نساء) تتراوح أعمارهم بين 30 – 50 عام ويعانون من آلم أسفل الظهر لمدة تزيد عن ثلاثة أشهر. تم تقسيم المرضى عشوائياً إلى مجموعتين متساويتين، تم علاج المجموعة الأولى بتقنية طاقة الانقباض العضلي، والثانية بتقنية الإجهاد مقابل الإجهاد ببرنامج علاج طبي مستوحى من أشعة تحت الحمراء، موجات فوق الصوتية، تمارين علاجية لكلتا المجموعتين.

النتائج: أظهرت النتائج فروقات ذات دلالة إحصائية في كلتا المجموعتين في الشدة الألم، مدى الحركة (الثنائي والفردي) لمجموعة الطاقة العضلية، وكذلك مقياس أوستنتر للعجز الوظيفي قبل وبعد العلاج إلا أنها أوضحت أيضاً أنه ليس هناك فروق ذات دلالة إحصائية بين كل من تقنيات طاقة الانقباض العضلي والإجهاد مقابل الإجهاد على هذه المتغيرات الثلاثة الخصائصية. تقنيات العلاج اليدوي الإستوباثية لها تأثير في التحكم والسطرة على آلم أسفل الظهر المزمن.