Experimental Research Designs

The purpose of an experimental design is to provide a structure for evaluating the cause-and-effect relationship between a set of independent and dependent variables Two classes of factors that jeopardize the validity of research findings

Factors concerned with *internal* validity.
 (cause and effect)

 Factors concerned with *external* validity (generalization). Internal validity is threatened whenever there exists the possibility of un-controlled extraneous variables that might otherwise account for the results of a study.

History

Maturation

Testing

- Instrumentation
- Statistical regression
- Differntial Selection
- Research mortality

External Validity

Concerned with whether the results of a study can be generalized beyond the study itself:

- 1. Population validity (when the *sample* does not adequately represent the *population*).
- 2. Personological validity (when personal/ psychological characteristics interact with the treatment).
- Ecological validity (when the situational characteristics of the study are not representative of the population).

Selecting a Design

- I- How many independent variables are being tested?
- 2. How many levels does each independent variable have?
- 3. How many groups of subjects are being tested?
- 4. How will subjects be selected, and how will they be assigned to groups?

Types of Experimental Designs

- Simple True Experimental
- Complex True Experimental
- Quasi-Experimental

Types of Experimental Designs

- Simple True Experimental
- Complex True Experimental
- Quasi-Experimental

Simple True Experimental

- Characteristics
- Types
- Variations

Characteristics of True Designs

- Manipulation (treatment)
- Randomization
- Control group

Characteristics of simple true designs
One IV with 2 levels (T, C)
One DV

Types

Randomized posttest control group design
 Randomized pretest-posttest control group design

Randomized posttest control group design

- R T Post
- R C Post

Randomized pretest-posttest control group design

RPreTPostRPreCPost

Advantages & Disadvantages

- Advantages of pretest design
 Equivalency of groups
 Can measure extent of change
 Determine inclusion
- Disadvantages of pretest design
 Time-consuming
 Sensitization to pre-test

Types of Experimental Designs

- Simple True Experimental
- Complex True Experimental
- Quasi-Experimental

Characteristics of True Designs

- Manipulation (treatment)
- Randomization
- Control group

Characteristics of simple true designs
One IV with 2 levels (T, C)
One DV

Complex True Experimental

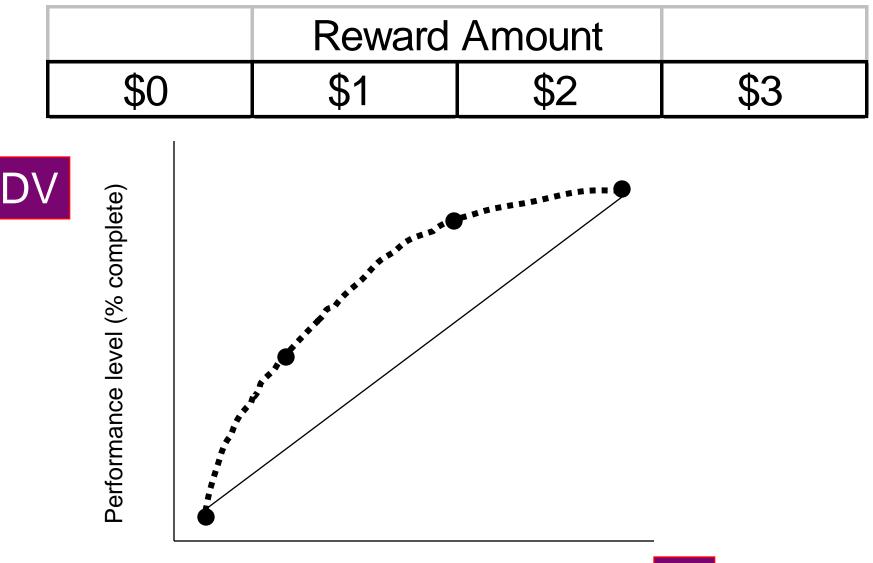
- Randomized matched control group design
- Increased levels of IV
- Factorial design
- Multiple DVs

Complex True Experimental

- Randomized matched control group design
- Increased levels of IV
- Factorial design
- Multiple DVs

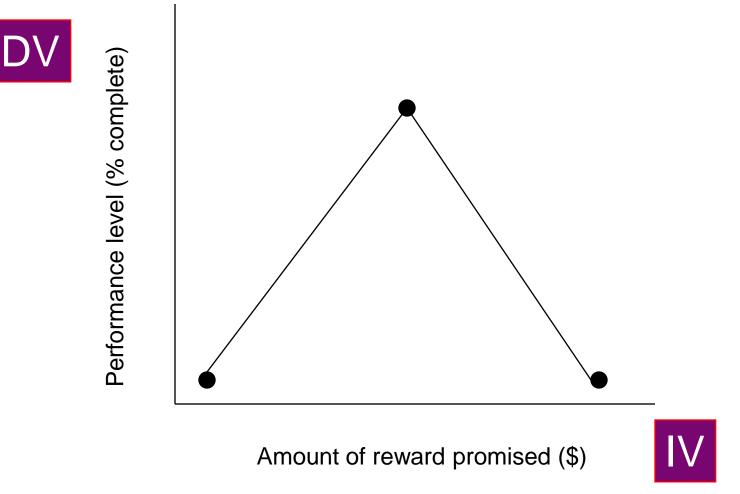
Randomized matched control group design

MRTPostMRCPost


Used in small samples
1 cost in time & money

Complex True Experimental

- Randomized matched control group design
- Increased levels of IV
- Factorial design
- Multiple DVs


Increased Levels of IV

- Provides more complete information about the relationship between the IV & DV
- Detects curvilinear relationships
- Examines effects of multiple treatments

Increased Levels of IV

Complex True Experimental

- Randomized matched control group design
- Increased levels of IV
- Factorial design
- Multiple DVs

Factorial Design

- >1 IV (factor)
- Simultaneously determine effects of 2 or more factors on the DV (real world)

Do differing exercise regimens (hi, med, lo intensity) have the same effect on men as they do on women?

3 X 2 (Exercise Regimen X Gender)
 Exercise Regimen – 3 levels
 Gender – 2 level

		Gender	
		Male	Female
Exercise Intensity	High		
	Medium		
	Low		

М

Do strength gains occur at the same rate in men as they do in women over a 6 mo. training period? Measurements are taken at 0, 2, 4, 6 mo.

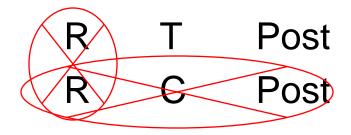
2 X 4 (Gender X Time)
 Time – 4 levels
 Gender – 2 levels

Advantages of factorial designs:
 Greater protection against Type I error
 More efficient
 Can examine the interaction
 Disadvantages:

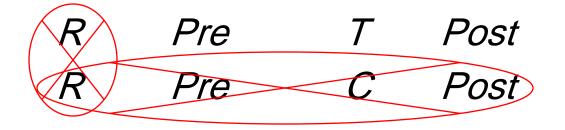
 \Box \uparrow subject # for between factor designs

Complex True Experimental

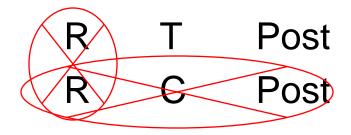
- Randomized matched control group design
- Increased levels of IV
- Factorial design
- Multiple DVs


Types of Experimental Designs

- Simple True Experimental
- Complex True Experimental
- Quasi-Experimental


Characteristics of True Designs

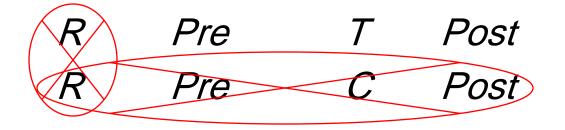
Manipulation (treatment)
 Randomization
 Control group



Quasi-experimental Designs

- One group posttest-only design
- One group pretest-posttest design
- Non-equivalent control group design
- Non-equivalent control group pretest-posttest design
- Time series
- Single subject designs (Case study)
- Developmental designs

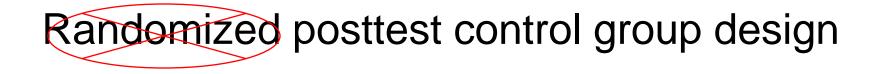
- One group posttest-only design
- One group pretest-posttest design
- Non-equivalent control group design
- Non-equivalent control group pretest-posttest design
- Time series
- Single subject designs (Case study)
- Developmental designs

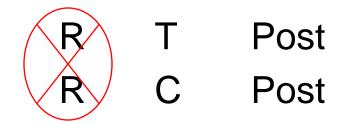

One group posttest-only design (One shot study)

T Post

No control of IV threats Use?

- One group pretest-posttest design
- Non-equivalent control group design
- Non-equivalent control group pretest-posttest design
- Time series
- Single subject designs (Case study)
- Developmental designs


One group pretest-posttest design


Pre T Post

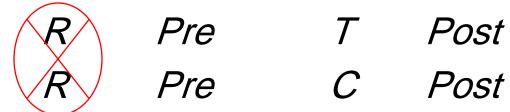
History
Maturation
Testing
Instrument decay
Regression

- One group pretest-posttest design
- Non-equivalent control group design
- Non-equivalent control group pretest-posttest design
- Time series
- Single subject designs (Case study)
- Developmental designs

Non-equivalent control group design (Static group comparison design)

T Post C Post

•Selection bias


One shot study

- One group pretest-posttest design
- Non-equivalent control group design
- Non-equivalent control group pretest-posttest design

Time series

- Single subject designs (Case study)
- Developmental designs

Randomized pretest-posttest control group design

Non-equivalent control group pretest-posttest design

PreTPostPreCPost

•Can check selection bias

One shot study

- One group pretest-posttest design
- Non-equivalent control group design
- Non-equivalent control group pretest-posttest design

Time series

- Single subject designs (Case study)
- Developmental designs

Time series

Pre Pre Pre Pre T Post Post Post Post

- One group pretest-posttest design
- Non-equivalent control group design
- Non-equivalent control group pretest-posttest design
- Time series
- Single subject designs (Case study)
- Developmental designs

- One group pretest-posttest design
- Non-equivalent control group design
- Non-equivalent control group pretest-posttest design
- Time series
- Single subject designs (Case study)
- Developmental designs

Developmental Research Designs

Longitudinal

Cross Sectional

- Powerful (within subject)
- Time consuming
- Attrition
- Testing effect

- Less time consuming
- Cohorts problem